Dérivation d'un modèle moyenné pour un écoulement diphasique compressible stratifié

Pierrick Le Vourc'h (IMAG, Université de Montpellier) Sous la direction de Khaled Saleh (ICJ, Université Claude Bernard Lyon 1) et Nicolas Seguin (Inria)

Objectifs

Dérivation d'un modèle moyenné par réduction de dimension : en s'inspirant de dérivations formelles existantes [4] [8], on met en place une stratégie de réduction de dimension pour un écoulement compressible barotrope stratifié avec conditions de type Navier à l'interface. On espère ainsi retrouver formellement des modèles moyennés classiques de la littérature, comme celui proposé dans [1]. En effectuant un deuxième passage à la limite, on peut dériver un modèle à partir d'un écoulement avec conditions de Dirichlet à l'interface.

Convergence de Navier-Stokes vers un modèle limite : la procédure précédente avec conditions de Dirichlet à l'interface fournit un modèle moyenné en 2D avec une vitesse et une pression pour le mélange, qui est strictement hyperbolique. On cherche à montrer que les solutions au problème de Navier-Stokes convergent fortement vers les solutions du système moyenné grâce à une stratégie d'entropie relative [6, 7, 9].

Modèle microscopique

On considère un écoulement barotrope en couche mince : $\varepsilon = D/L \ll 1$, $p_k = p_k(\rho_k)$ pour k = 1, 2. On suppose que l'interface est décrite par le graphe d'une fonction $D\alpha_1$ indépendante de z et que $w_k = O(\varepsilon)$ pour k = 1, 2. Chaque fluide vérifie un système de type Navier-Stokes compressible visqueux sur le domaine qu'il occupe. Les coefficients de viscosité et de frottement peuvent dépendre de ε . Cela donne :

Navier-Stokes

$$\partial_t \rho_k + \nabla \cdot (\rho_k \mathbf{v}_k) = 0, \tag{1}$$
$$\mathbf{v}_k) + \nabla \cdot (\rho_k \mathbf{v}_k \otimes \mathbf{v}_k) + \nabla p_k = \nabla \cdot \mathbb{S}_k (\nabla \mathbf{v}_k), \tag{2}$$

$$\partial_t(
ho_k \mathbf{v}_k) +
abla \cdot (
ho_k \mathbf{v}_k \otimes \mathbf{v}_k) +
abla p_k =
abla \cdot \mathbb{S}_k(
abla \mathbf{v}_k),$$

avec

$$\mathbb{S}_k(\nabla \mathbf{v}_k) = \mu_k(\nabla \mathbf{v}_k + (\nabla \mathbf{v}_k)^T) + (\eta_k - \frac{2}{3}\mu_k)\nabla \cdot \mathbf{v}_k \operatorname{Id}.$$

Conditions au bord du tuyau

$$\mathbf{v}_k \cdot \mathbf{n}|_{\partial\Omega} = 0$$
 et $(\mathbb{S}_k(\nabla \mathbf{v}_k)\mathbf{n} + \kappa_k \mathbf{v}_k)_{tan}|_{\partial\Omega} = 0.$

Conditions à l'interface :

$$\left(\left(-p_1 \operatorname{Id} + \mathbb{S}_1(\nabla \mathbf{v}_1)\right)\mathbf{n}_{\Gamma}\right)\Big|_{z=D\alpha_1} = \left(\left(-p_2 \operatorname{Id} + \mathbb{S}_2(\nabla \mathbf{v}_2)\right)\mathbf{n}_{\Gamma}\right)\Big|_{z=D\alpha_1},$$

$$\left(\mathbf{v}_{1}\cdot\mathbf{n}_{\Gamma}\right)\Big|_{z=D\alpha_{1}}=\left(\mathbf{v}_{2}\cdot\mathbf{n}_{\Gamma}\right)\Big|_{z=D\alpha_{1}},$$

$$\left((-p_1\operatorname{Id} + \mathbb{S}_1(\nabla \mathbf{v}_1))\mathbf{n}_{\Gamma} + \kappa_i(\mathbf{v}_1 - \mathbf{v}_2)\right)_{tan}\Big|_{z=D\alpha_1} = 0.$$

- **Protocole**
- 1. Adimensionnement : introduction de dimensions caractéristiques liées aux différentes grandeurs du problème et changement d'échelle pour ne faire apparaître qu'un seul paramètre $\varepsilon = D/L \ll 1$ et obtenir des équations en fonction des grandeurs adimensionnées avec une dépendance explicite en ε .
- 2. Analyse asymptotique : on choisit de négliger certains termes dans les équations et les conditions de bord en fonction de leur dépendance en ε .
- 3. Moyennisation : intégration des équations asymptotiques sur la hauteur respective des fluides. On obtient un système d'équations sur les grandeurs moyennes, décrivant donc un écoulement diphasique en deux dimensions.
- 4. Fermeture des équations : l'intégration des équations fait apparaître des termes de bord, que l'on exprime en fonction des grandeurs moyennes à l'aide des conditions au bord et à l'interface.
- 5. Limite $\varepsilon \to 0$ et identification du modèle 2D obtenu.

Obtention de modèles moyennés

Notations : Pour *f* une fonction définie sur le domaine occupé par le fluide *k*, on note

•
$$\overline{f} = \frac{1}{\alpha_k} \int f(z) \, \mathrm{d}z \, \operatorname{et} \, \widehat{f} = \overline{\rho_k f} / \overline{\rho_k},$$
 • $\nabla_h f = (\partial_x f, \partial_y f).$

Équations moyennées :

$$\partial_{t}(\alpha_{1}\overline{\rho_{1}^{\varepsilon}}) + \nabla_{h} \cdot (\alpha_{1}\overline{\rho_{1}^{\varepsilon}} \, \widehat{\mathbf{v}_{1,h}^{\varepsilon}}) = 0, \tag{7}$$

$$\partial_{t}(\alpha_{2}\overline{\rho_{2}^{\varepsilon}}) + \nabla_{h} \cdot (\alpha_{2}\overline{\rho_{2}^{\varepsilon}} \, \widehat{\mathbf{v}_{2,h}^{\varepsilon}}) = 0, \tag{8}$$

$$\partial_{t}(\alpha_{1}\overline{\rho_{1}^{\varepsilon}} \, \widehat{\mathbf{v}_{1,h}^{\varepsilon}}) + \nabla_{h} \cdot (\alpha_{1}(\overline{\rho_{1}^{\varepsilon}} \, \widehat{\mathbf{v}_{1,h}^{\varepsilon}} + \overline{F_{1}^{\varepsilon}})) = -\frac{\kappa_{1}}{\varepsilon} \widehat{\mathbf{v}_{1,h}^{\varepsilon}} - \frac{\kappa_{i}}{2\varepsilon} (\widehat{\mathbf{v}_{1,h}^{\varepsilon}} - \widehat{\mathbf{v}_{2,h}^{\varepsilon}}) + F_{1}^{\varepsilon}(\alpha_{1})\nabla_{h}\alpha_{1} + R, \tag{9}$$

$$\partial_{t}(\alpha_{2}\overline{\rho_{2}^{\varepsilon}} \, \widehat{\mathbf{v}_{2,h}^{\varepsilon}}) + \nabla_{h} \cdot (\alpha_{2}(\overline{\rho_{2}^{\varepsilon}} \, \widehat{\mathbf{v}_{2,h}^{\varepsilon}} + \overline{F_{2}^{\varepsilon}})) = -\frac{\kappa_{2}}{\varepsilon} \widehat{\mathbf{v}_{2,h}^{\varepsilon}} + \frac{\kappa_{i}}{2\varepsilon} (\widehat{\mathbf{v}_{1,h}^{\varepsilon}} - \widehat{\mathbf{v}_{2,h}^{\varepsilon}}) + F_{2}^{\varepsilon}(\alpha_{1})\nabla_{h}\alpha_{2} + R, \tag{10}$$

où $R = O\left(\mu + \kappa_i \frac{\kappa + \varepsilon}{\mu} + \varepsilon^2 \frac{\kappa^2 + \varepsilon^2}{\mu^2}\right)$

 $\partial_t($

(3)

(4)

(5)

(6)

Discussion sur les coefficients μ , κ et κ_i : pour que les termes d'erreur tendent vers 0 et que les termes sources de nos équations ne dépendent pas de ε à la limite, on impose

$$k = 1, 2,$$
 $\mu_k = \tilde{\mu_k} \varepsilon^{\tau}, \ 0 < \tau \leqslant 2,$ $\kappa_k = \tilde{\kappa_k} \varepsilon^{\xi}, \ \xi > 1 \text{ et } \kappa_i = \tilde{\kappa_i} \varepsilon.$

Discussion sur les pressions : à la limite, les flux effectifs sont égaux aux pressions, et les pressions sont indistinguables. On se retrouve avec un modèle à une pression. Modèle final :

$$\partial_{t}(\alpha_{1}\overline{\rho_{1}}) + \nabla_{h} \cdot (\alpha_{1}\overline{\rho_{1}} \, \widehat{\mathbf{v}_{1,h}}) = 0, \qquad (11)$$

$$\partial_{t}(\alpha_{2}\overline{\rho_{2}}) + \nabla_{h} \cdot (\alpha_{2}\overline{\rho_{2}} \, \widehat{\mathbf{v}_{2,h}}) = 0, \qquad (12)$$

$$\partial_{t}(\alpha_{1}\overline{\rho_{1}} \, \widehat{\mathbf{v}_{1,h}}) + \nabla_{h} \cdot (\alpha_{1}\overline{\rho_{1}} \, \widehat{\mathbf{v}_{1,h}} + \alpha_{1}\overline{p_{1}}) - p_{i}\nabla_{h}\alpha_{1} = -\frac{\tilde{\kappa_{i}}}{2}(\widehat{\mathbf{v}_{1,h}} - \widehat{\mathbf{v}_{2,h}}), \qquad (13)$$

$$\partial_{t}(\alpha_{2}\overline{\rho_{2}} \, \widehat{\mathbf{v}_{2,h}}) + \nabla_{h} \cdot (\alpha_{2}\overline{\rho_{2}} \, \widehat{\mathbf{v}_{2,h}} + \alpha_{2}\overline{p_{2}}) - p_{i}\nabla_{h}\alpha_{2} = \frac{\tilde{\kappa_{i}}}{2}(\widehat{\mathbf{v}_{1,h}} - \widehat{\mathbf{v}_{2,h}}), \qquad (14)$$

 $p_i := \overline{p_1} = p$

Commentaires sur le modèle (11)-(16) :

- Ce modèle est la version isentropique du modèle diphasique standard proposé dans [3] et [5], dit à deux vitesses et une pression. Il est non-hyperbolique, mais on peut le stabiliser à l'aide de termes supplémentaires, voir par exemple [2].
- À la limite $\tilde{\kappa}_i \to +\infty$, on rejoint le cas où les conditions à l'interface sont de type Dirichlet. On obtient alors un modèle à une pression et une vitesse qui est strictement hyperbolique.

Bibliographie

- [1] BAER, M. R., AND NUNZIATO, J. W. A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) [4] GERBEAU, J.-F., AND PERTHAME, B. Derivation of Viscous Saint-Venan in Reactive Granular Materials, International Journal of Multiphase Flow 12, 6 (Nov. 1986), 861-889.
- [2] BRESCH, D., DESJARDINS, B., GHIDAGLIA, J.-M., AND GRENIER, E. Global Weak Solutions to a Generic Two-Fluid Model. Archive for Rational Mechanics and Analysis 196, 2 (May 2010), 599-629.
- [3] DREW, D. A., AND PASSMAN, S. L. Theory of Multicomponent Fluids, vol. 135 of Applied Mathematical Sciences. [6] JIN, B. J., AND NOVOTNÝ, A. Weak-strong uniqueness for a bi-fluid model for a mixture of non-interacting compressible [9] SUEUR, F. On the inviscid limit for the compressible navier-stokes system in an impermeable bounded domain. Journal Springer New York, New York, NY, 1999.
- Validation. Discrete & Continuous Dynamical Systems B 1, 1 (2001),
- [5] ISHII, M., AND HIBIKI, T. Thermo-Fluid Dynamics of Two-Phase Flow, 2nd ed ed. Springer, New York, 2011.
 - fluids. Journal of Differential Equations 268, 1 (Dec. 2019), 204-238.

$$p_i \nabla_h \alpha_2 = \frac{\kappa_i}{2} (\widehat{\mathbf{v}_{1,h}} - \widehat{\mathbf{v}_{2,h}}), \qquad (14)$$
$$\alpha_1 + \alpha_2 = 1, \qquad (15)$$

$$p_1(\overline{\rho_1}) = p_2(\overline{\rho_2}) = \overline{p_2},$$
 (16)

Convergence dans le cas Dirichlet

Notations : Si $(s_1, s_2) \in \mathbb{R}^2_+$ et $f = p, \kappa, \mathbb{S}$, on note $f(s_1, s_2) = \frac{s_1}{s} f_1(s_1) + \frac{s_2}{s} f_2(s_2)$. On note $\rho^{\varepsilon} = \rho_1^{\varepsilon} + \rho_2^{\varepsilon}$ et $r = r_1 + r_2$.

Modèle microscopique

En notant $\nabla_{\varepsilon} = (\nabla_h, \frac{1}{2}\partial_z)$, on étudie le système (1)-(4) avec conditions de Dirichlet à l'interface, posé sur $\Omega = \mathbb{T} \times (0, 1)$:

 ∂_t

$$\rho_1^{\varepsilon} + \nabla_{\varepsilon} \cdot (\rho_1^{\varepsilon} \mathbf{v}^{\varepsilon}) = 0, \tag{17}$$

$$\partial_t \rho_2^{\varepsilon} + \nabla_{\varepsilon} \cdot (\rho_2^{\varepsilon} \mathbf{v}^{\varepsilon}) = 0, \tag{18}$$

$$\partial_t(\rho^{\varepsilon} \mathbf{v}^{\varepsilon}) + \nabla_{\varepsilon} \cdot (\rho^{\varepsilon} \mathbf{v}^{\varepsilon} \otimes \mathbf{v}^{\varepsilon}) + \nabla_{\varepsilon} p(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}) = \nabla_{\varepsilon} \cdot \mathbb{S}(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}, \nabla_{\varepsilon} \mathbf{v}^{\varepsilon}),$$
(19)

$$(\mathbb{S}(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}, \nabla_{\varepsilon} \mathbf{v}^{\varepsilon})\mathbf{n} + \kappa(\rho_1^{\varepsilon}, \rho_2^{\varepsilon})\mathbf{v}^{\varepsilon})_{tan}|_{\partial\Omega} = 0, \quad \mathbf{v}^{\varepsilon} \cdot \mathbf{n}|_{\partial\Omega} = 0.$$
(20)

Le système (17)-(20) admet des solutions faibles globales qui vérifient l'inégalité d'énergie

$$\begin{aligned} \forall t \in \mathbb{R}_+, \quad & \int_{\Omega} \left(\frac{1}{2} \rho^{\varepsilon} |\mathbf{v}^{\varepsilon}|^2 + H(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}) \right)(t) \, \mathrm{d}\mathbf{x} + \int_0^t \int_{\Omega} \mathbb{S}(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}, \nabla_{\varepsilon} \mathbf{v}^{\varepsilon}) : \nabla_{\varepsilon} \mathbf{v}^{\varepsilon}(\tau) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\tau \\ & \quad + \int_0^t \int_{\partial\Omega} \kappa(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}) |\mathbf{v}^{\varepsilon}|^2(\tau) \, \mathrm{d}\sigma \, \mathrm{d}\tau \leqslant \int_{\Omega} \left(\frac{1}{2} \rho^{\varepsilon} |\mathbf{v}^{\varepsilon}|^2 + H(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}) \right)(0) \, \mathrm{d}\mathbf{x}, \end{aligned}$$

où $H(\rho_1^{\varepsilon}, \rho_2^{\varepsilon})$ est une fonction satisfaisant

$$(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}) \cdot \nabla H(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}) - H(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}) = p(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}).$$

Modèle limite

On considère la réécriture de (11)-(16) dans le cas de conditions de Dirichlet à l'interface.

 ∂_t

$$\partial_t r_1 + \nabla_h \cdot (r_1 \mathbf{u}) = 0,$$
 (21)

$$r_2 + \nabla_h \cdot (r_2 \mathbf{u}) = 0, \tag{22}$$

$$\partial_t(r\mathbf{u}) + \nabla_h \cdot (r\mathbf{u} \otimes \mathbf{u}) + \nabla_h p(r_1, r_2) = 0,$$
(23)

$$p(r_1, r_2) := p_1(r_1) = p_2(r_2).$$
 (24)

(26)

Le système (21)-(24) admet des solutions fortes locales qui vérifient l'équation d'énergie

$$\forall t \in (0,T), \quad \int_{\mathbb{T}} \left(\frac{1}{2} r |\mathbf{u}|^2 + H(r_1, r_2) \right) (t) \, \mathrm{d}\mathbf{x} = \int_{\mathbb{T}} \left(\frac{1}{2} r |\mathbf{u}|^2 + H(r_1, r_2) \right) (0) \, \mathrm{d}\mathbf{x}.$$

Convergence des solutions

On introduit la fonctionnelle d'entropie relative

$$\mathcal{E}(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}, \mathbf{v}^{\varepsilon} \mid r_1, r_2, \mathbf{U}) = \int_{\Omega} \left[\frac{1}{2} \rho^{\varepsilon} |\mathbf{v}^{\varepsilon} - \mathbf{U}|^2 + E(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}, r_1, r_2) \right] \, \mathrm{d}\mathbf{x}$$
(25)

avec

$$E(\rho_1^\varepsilon,\rho_2^\varepsilon,r_1,r_2) = H(\rho_1^\varepsilon,\rho_2^\varepsilon) - H(r_1,r_2) - (\rho_1^\varepsilon - r_1,\rho_2^\varepsilon - r_2) \cdot \nabla H(r_1,r_2) \quad \text{et} \quad \mathbf{U} = (\mathbf{u},0).$$

Cette fonctionnelle joue le rôle d'une distance entre les solutions faibles de (17)-(20) et les solutions fortes de (21)-(24).

Il existe C > 0 tel que pour toute solution faible de (17)-(20) et toute solution forte de (21)-(24),

 $\forall t \in (0,T), \quad \mathcal{E}(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}, \mathbf{v}^{\varepsilon} \mid r_1, r_2, \mathbf{U})(t) \leqslant C \mathcal{E}(\rho_1^{\varepsilon}, \rho_2^{\varepsilon}, \mathbf{v}^{\varepsilon} \mid r_1, r_2, \mathbf{U})(0).$

nt System for Laminar Shallow Water; Numerical	[7] MALTESE, D., AND NOVOTNÝ, A. Compressible Navier-Stokes equations on thin domains. Journal of Mathematical
89–102.	Fluid Mechanics 16, 3 (Sept. 2014), 571–594. Publisher: Birkhauser Verlag AG.
	[8] STEWART H B AND WENDROFE B Two-phase flow: Models and methods Journal of Computational Physics 56.3

(Dec. 1984), 363-409.

of Mathematical Fluid Mechanics 16, 1 (2014), 163–178. Publisher: Birkhauser Verlag AG.